
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

String Matching Strategies in Database-Oriented

Architectures

Yonatan Edward Njoto - 12325036

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: yonatan.njoto@gmail.com , 13523036@std.stei.itb.ac.id

Abstract—This project demystifies database performance by

demonstrating the power of indexing. Through a real-world

PostgreSQL benchmark and a foundational C++ Generalized

Inverted Index implementation, showing how to achieve search

speedups. This incredible gain comes at the minor cost of

overhead when adding new data. Designed as a hands-on guide,

this project is the perfect resource for developers and students to

learn both the practical impact and the core mechanics of

database optimization.

Keywords—Computer Science, String, Indexing, B-Tree,

Database

I. INTRODUCTION

In modern software development, the efficiency of data
retrieval is a crucial part of application performance. As
datasets grow and user loads increase, databases can quickly be
a significant bottleneck. To address this, architects employ
various scaling strategies, such as partitioning (horizontally
sharding tables across multiple servers or vertically splitting
them by columns) help manage massive datasets. The use of
read-only replicas allows for the distribution of query loads,
separating read-heavy traffic from the primary write database.
Furthermore, caching layers and load balancers are often
implemented to enhance responsiveness and ensure high
availability.

While these architectural patterns are mandatory to scale a
system that can serve huge number of users, performance
optimization also relies heavily on foundational techniques and
algorithms. Among the most critical of these is the strategic
implementation of database indexing, a method for optimizing
query performance directly within the database engine.
However, the benefits of indexing are often accompanied by a
trade-off in write performance, a nuance that is critical for
developers and database administrators to understand.

This project undertakes a comprehensive, hands-on analysis
of the performance impact of a specific and powerful indexing
strategy: GIN (Generalized Inverted Index) for string
operations. While scaling techniques like partitioning and read
replicas address the "where" and "how many" of data
processing, this study focuses on the "how fast" at the query
level. Aiming to bridge the gap between abstract theory and
concrete results through a dual-pronged approach. First, a

benchmark will be made on a live PostgreSQL database to
measure real-world performance on tables with and without
indexes. Second, to demystify the underlying mechanics, an
implementation of a GIN-like data structure in C++ is
provided, comparing its performance to a simple linear search
through text.

The following sections will detail the methodology used for
both the PostgreSQL benchmark and the C++ implementation.
Then a comparative analysis of the performance data collected,
highlighting the emergent patterns in reading and writing
speeds. Finally, this report will discuss the broader implications
of these findings, offering insights into the practical trade-offs
of indexing and providing guidance on making informed
decisions in database design and system architecture.

II. THEORITICAL BACKGORUND

A. Brute Force

The foundational challenge in data retrieval, especially for

complex data like text, is finding specific information within a

large collection. The most basic approach is the brute-force

algorithm. To find documents containing a specific term, this

method requires a Linear Scan. The system must read every

single record in a table, scan its entire text content for the

desired word, and repeat this for every record. This approach

has a time complexity of O(n*m), where n is the number of

records and m is the size of the content to be scanned, making

it profoundly inefficient and unscalable.

B. Decrease and Conquer

To overcome the severe limitations of the brute-force
method, databases employ sophisticated index structures. One
of the most well-known is the B-Tree, which excels at rapidly
finding individual, ordered values (like a specific username or
an ID number). However, a B-Tree is not designed for the
unique challenge of searching for multiple, independent terms
within large blocks of text. For this purpose, a specialized
solution like the GIN (Generalized Inverted Index) is required,
which operates on a Divide and Conquer strategy. Instead of
treating a search for multiple terms as one large problem, this
paradigm breaks it down into smaller, independent sub-
problems [1]. For instance, a query for "database AND
performance" is divided into two distinct tasks: 1) find all

mailto:yonatan.njoto@gmail.com
mailto:13523036@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

records containing "database," and 2) find all records
containing "performance." The system then "conquers" each
sub-problem individually and "combines" the results, allowing
it to efficiently pinpoint relevant records.

C. String Matching

In the context of this database index, string matching refers
to the fundamental operation of using strings as keys for
comparison which can be done with various algorithms such as
Knuth–Morris–Pratt algorithm or Boyer–Moore [4]. The B-tree
efficiently navigates its nodes by performing basic lexical
comparisons (<, =, >) on these string keys. This allows the
database to quickly locate a specific record without resorting to
a slow, full scan that would compare against every string in the
table.

III. IMPLEMENTATION

To analyze the performance of DBMS (database
management systems), a connection using a Python client to
PostgreSQL is established. The initial setup involves
provisioning a test table with an id SERIAL PRIMARY KEY
column and a data TEXT column to hold string-based content.
The one being used to search is the string-based content
because we are comparing index toward strings.

Figure 1. Database Schema
Source: https://github.com/yonatan-nyo/string-dbms-handling

To ensure the integrity and repeatability of benchmarks, the
benchmark code must account for PostgreSQL's internal data
handling. For read-side consistency, executing DISCARD ALL
to reset the session's state, clearing any cached query plans. On
the write-side, it is important to note how PostgreSQL ensures
data is safely stored on disk. As the official documentation
notes:

One aspect of reliable operation is that all data from a
committed transaction must be stored in a nonvolatile area safe
from power loss, OS failure, or hardware failure. While this
seems straightforward, it is complicated by the fact that "disk
drives are dramatically slower than main memory and CPUs",
which has led to several layers of caching between the main
memory and the physical disk. These layers include the
operating system's buffer cache, a potential cache in the disk
drive controller (common on RAID cards), and finally, caches
within most disk drives themselves [2].

These caches, particularly "write-back" caches that delay
sending data to the drive, can present a reliability hazard as
their contents are often volatile and can be lost when there is
power failure. To handle this, PostgreSQL utilizes operating
system features to force writes from the buffer cache to the
disk. However, the responsibility falls on the administrator to
use reliable hardware, such as disk controllers with "battery-

backed caches", and to correctly configure all components. For
consumer-grade drives, this may involve disabling the drive's
write-back cache if it cannot guarantee data will be written
before a shutdown [2].

Another risk to data integrity is the possibility of partial
page writes, where a power failure occurs after some, but not
all, sectors of a page have been written to the disk platter. To
guard against this, "PostgreSQL periodically writes full page
images to permanent storage before modifying the actual page
on disk". This strategy ensures that during a crash recovery,
PostgreSQL can restore any partially written pages from these
full-page images, preserving data consistency. [2]

Figure 2. Database Clear Cache
Source: https://github.com/yonatan-nyo/string-dbms-handling

This experiment is designed to benchmark database
performance under controlled data growth, observing how
internal index structures evolve and impact operation times.
The methodology involves populating two tables, one with a
index (GIN) and the other one without any index.

To capture a good performance curve, the database tables
are populated in stages. The total number of records grows
multiplicatively by a factor of 1.2 at each stage, starting from a
small base and scaling up to a maximum of 250,000 records.
This multiplicative approach provides information at smaller
record counts and generates a smooth distribution of data
points across the entire test range, making it easier to visualize
performance trends as the dataset scales.

At each stage, a chunk of data is inserted into the indexed
and non-indexed tables, to measure the overhead associated
with maintaining a GIN index during write operations by
comparing the time consumed on operations.

Batch Insertion: To ensure efficient data loading and
simulate a realistic bulk-insert scenario, the program will use
the psycopg2.extras.execute_batch function which optimizes
the insertion process by minimizing network roundtrips
between the application and the database server.

The comparison between the insertion time for the indexed
table (test_data_indexed) and the un-indexed table (test_data)
will be the write penalty. This overhead is expected, as an
indexed insert requires the database to perform additional
work: parsing the text, breaking it into tokens, and updating the
GIN index's complex structure of token dictionaries and
posting lists to be able to address data table as it grows.

https://github.com/yonatan-nyo/string-dbms-handling
https://github.com/yonatan-nyo/string-dbms-handling

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Figure 3. Benchmark Select
Source: https://github.com/yonatan-nyo/string-dbms-handling

In accordance with official PostgreSQL documentation, the
GIN (Generalized Inverted Index) has been selected [3]. To
better understand the mechanics behind GIN, Generalized
Inverted Index will be modeled and implemented in C++ as
part of this investigation.

Figure 4. Generalized Inverted Index
Source: https://github.com/yonatan-nyo/string-dbms-handling

To facilitate this, a C++ program demonstrates core
principles of a Generalized Inverted Index, as detailed in the
GINIndex.h header file. This in-memory model serves as a
simulation, to observe the logical operations or algorithm that
provides better performance of production systems like
PostgreSQL.

The fundamental concept is an "inversion" of the typical
data-to-record relationship. Instead of mapping a record to its
content, GINIndex maps individual components of the content
specifically words or "tokens" back to the records that contain
them. This is achieved through the primary data structure
std::unordered_map<std::string, std::set<const Record *>>,
which acts as the heart of inverted index. In this map, each
unique token serves as a key, while the value is a set of
pointers to every record containing that token.

The "write performance" measured in benchmark directly
corresponds to the execution time of the GINIndex::insert
method. When a new record is introduced, its text content
undergoes a multi-stage process.

Figure 5. Normalize Token
Source: https://github.com/yonatan-nyo/string-dbms-handling

First, the tokenize function splits the text into a vector of
individual terms. Subsequently, each term is passed to a
normalizeToken function to ensure consistency by converting
it to lowercase and removing punctuation. This prevents
semantic duplicates, like "Apple" and "apple," from being
treated as distinct entries.

Finally, for each normalized token, the system updates the
main tokenIndex, adding a pointer to the new record into the
corresponding set. This process highlights why GIN index
updates can be resource-intensive; a single record rich with
unique words can trigger dozens of distinct updates within the
index structure.

https://github.com/yonatan-nyo/string-dbms-handling
https://github.com/yonatan-nyo/string-dbms-handling
https://github.com/yonatan-nyo/string-dbms-handling

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Figure 6. Generalized Inverted Index Search
Source: https://github.com/yonatan-nyo/string-dbms-handling

Similarly, read performance is assessed by timing the
searchAND and searchOR operations, which simulate common
text-based queries. To find records containing any of the
specified terms (an OR search), the system retrieves the set of
record pointers for each term and then computes the union of
these sets.

Conversely, to find records containing all specified terms
(an AND search), it computes the intersection of the pointer
sets. This intersection is a particularly efficient operation that

rapidly narrows the result set to only the records that satisfy the
strict criteria. By meticulously measuring the performance of
these fundamental insertion and search operations at each stage
of data growth, this benchmark will provide clear, empirical
data on how a GIN index behaves as its internal structures
become larger and more complex.

To quantify the true performance benefit of the GIN index,
the benchmark includes a contrasting unindexed search
methodology, brute-force linear scan. When a search is
initiated, the function iterates through every single record in the
collection, one by one from the beginning. For each record, it
performs a direct string comparison on the target field. This
process only concludes when a match is found or, in the worst-
case scenario, after the entire dataset has been examined.

IV. USAGE

The result of the indexed and unindexed field on insert
action from PostgreSQL is as follows:

Figure 7. Insert Performance
Source: https://github.com/yonatan-nyo/string-dbms-handling

On insert the performance of unindexed is faster around
twice as fast, because of the absence of index maintenance
overhead, clearly showing that the red line ("Without Index")
remains consistently below the blue line ("With Index"), and
this gap widens as the dataset grows. This performance
advantage is due to the simplicity of an unindexed insertion.

When a record is inserted into an unindexed table, the
database performs a single, straightforward operation: it writes
the new row data to the end of the table's data file (the "heap").
This is a relatively cheap append operation.

In contrast, when inserting into an indexed table, the
database must perform a two-step process (writing the data and
updating the index), Updating the index is the critical overhead.
The database must also update the GIN index to make the new
record searchable. This involves tokenizing the text, and for
every unique token, it must find its corresponding entry in the
index and add a new pointer to the new row.

This "index maintenance" is a significant additional
workload. As the chart shows, the cost of this workload is not
constant; it increases as the index itself grows larger and more
complex, which is why the blue line becomes progressively
steeper. The unindexed insert avoids this entire second step,
making it fundamentally faster.

https://github.com/yonatan-nyo/string-dbms-handling
https://github.com/yonatan-nyo/string-dbms-handling

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Figure 8. Select Performance
Source: https://github.com/yonatan-nyo/string-dbms-handling

On select the performance of unindexed is far worse than
indexed because of the difference in data retrieval strategy,
which is dramatically illustrated in the right chart, "SELECT
Performance." The performance of the indexed select is so
superior (over 294x faster at ~242,000 records) that the y-axis
must be on a logarithmic scale just to visualize both lines.

The reason for this stark contrast is how the database finds
the requested data, without an index, the database has no guide
to where a specific record might be. To satisfy the SELECT
query, it has no choice but to perform a Full Table Scan (or
Sequential Scan). It must read every single row in the table
from the beginning and compare its value to the search term.
As the table grows, the amount of work grows in direct
proportion. This is why the red line trends sharply upwards
more records mean more work and more time. This is known
as O(n) complexity.

With a GIN index, the database uses a highly efficient,
multi-step process. Instead of scanning the table, it first
consults the index. It performs a very fast lookup (akin to
looking up a word in a dictionary's index) to find the search
term(s). This lookup instantly provides it with a list of direct
pointers (TIDs) to the exact physical locations of all the
matching rows in the table. The database then uses these
pointers to fetch only the required rows, completely ignoring
the rest of the table.

This "Index Seek" operation is incredibly efficient. Its
performance depends on the structure of the index, not the size
of the table. This is why the blue line remains virtually flat and
close to zero, regardless of whether the table has 10,000 or
250,000 records. This “nearly constant” time is the primary
benefit of indexing.

Therefore, It is important to acknowledge that in production
environments handling massive datasets, indexing is just one
component of a much larger performance and scalability
strategy. To manage extreme, write loads and read traffic,
architects often employ advanced techniques such as database
partitioning, which splits large tables into smaller, more
manageable pieces, and master-slave (or source-replica)
architectures. This replication strategy allows read queries to be
distributed across multiple slave databases, drastically reducing
the load on the master database which is dedicated to handling
writes. These architectural patterns are critical for ensuring

high availability and throughput in large-scale systems.
Nevertheless, as the focus here is to fundamentally understand
the index-based approach at a granular level, C++ program will
further investigate the mechanics of the GIN algorithm through
the implementation.

Figure 9. C++ Data Preparation
Source: https://github.com/yonatan-nyo/string-dbms-handling

To assess search performance, the C++ program was
populated with a dataset of 500,000 records, each consisting of
an ID, username, and password. A performance test was then
conducted to measure search retrieval times, with the results
presented below in Figure 10.

Figure 10. C++ Select Performance
Source: https://github.com/yonatan-nyo/string-dbms-handling

The vast performance gap between the unindexed and
indexed search methods, as demonstrated by the 402 times
speedup shown in the output image, can be formally explained
through a deep analysis of their time and space complexity.
The unindexed approach relies on a brute-force linear scan. To
find the record for user499950, it must start at the very first
record and iterate through the entire collection, comparing each
username until it reaches the 499,950th entry. This means its
search time grows linearly with the number of records, n,
resulting in a time complexity of O(n). Doubling the records

https://github.com/yonatan-nyo/string-dbms-handling
https://github.com/yonatan-nyo/string-dbms-handling
https://github.com/yonatan-nyo/string-dbms-handling

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

would double the average search time. Its space requirement is
also O(n), as it only needs to store the data itself with no
significant structural overhead. This direct relationship between
data size and search time is why the unindexed method
becomes untenably slow as the dataset grows.

In contrast, the GIN index achieves its remarkable search
speed by leveraging a more sophisticated "inverted index" data
structure. As detailed in the GINIndex.cpp implementation, the
index is built around an std::unordered_map named
tokenIndex. Think of this like the index at the back of a large
textbook: instead of reading the whole book to find a term, you
go directly to the index page for that term. The C++
unordered_map (a hash map) allows for direct lookups of any
search term with an average time complexity of O(1), or
constant time. When the benchmark performs an indexed
search for 'user499950', the search function in GINIndex.cpp
does not scan the records. Instead, it hashes the term
'user499950' and goes directly to the corresponding entry in the
tokenIndex map. This immediately provides it with a set of
pointers to the exact memory locations of the matching records.
This O(1) complexity, which is critically independent of the
total number of records, is the core reason for the dramatic
performance improvement from over 1100 microseconds to
under 3 microseconds.

However, this search efficiency comes at a calculated cost,
which is evident in the GIN index's insertion time and space
usage. The insert function in GINIndex.cpp reveals this "write
penalty". When a new record is added, its text is broken into w
words (tokens). For each of these w tokens, the program must
perform a lookup in the tokenIndex and then insert a pointer
into a std::set, an operation with a time complexity of roughly
O(log p), where p is the number of records already associated
with that token. This multi-step process is significantly more
work than the simple O(1) unindexed insertion. Furthermore,
the space complexity is substantially higher at O(n + U + P),
where U is the number of unique tokens and P is the total
number of pointer instances stored in the index. For example, a
single common word like "the" might appear in thousands of
records, meaning its entry in the tokenIndex would hold
thousands of pointers, consuming significant memory. This
additional space is required to build and maintain the entire
inverted index structure that makes the O(1) search possible.
This trade-off slower writes and higher memory usage in
exchange for nearly instantaneous reads is fundamental to
high-performance database indexing.

V. CONCLUSION

This project demonstrates the critical trade-offs inherent in
database indexing for string-based searches. Through a hands-
on PostgreSQL benchmark and a foundational C++
implementation of a Generalized Inverted Index (GIN), a clear
performance dichotomy emerges.

Unindexed operations exhibit superior write performance,
with insertions being approximately twice as fast as their
indexed counterparts. This is because they involve a simple
append operation without the overhead of index maintenance.
However, this advantage is completely overshadowed by their

profoundly inefficient read performance, which degrades
linearly as the dataset grows, following an O(n) complexity.

Conversely, indexing provides a dramatic acceleration in
data retrieval. The PostgreSQL benchmark recorded indexed
SELECT queries performing over 294 times faster than
unindexed scans on a dataset of around 242,000 records. This
was further corroborated by the C++ model, which showed a
402-fold speedup on a dataset of 500,000 records. This
remarkable efficiency stems from the GIN index's ability to
perform lookups in nearly constant time, or O(1), by using a
hash map to directly locate data pointers.

The trade-off for this near-instantaneous read capability is
the "write penalty" the additional computational work required
to tokenize text and update the index structure upon data
insertion. This analysis confirms that while indexing is an
indispensable tool for optimizing read-heavy applications, its
impact on write speeds and memory usage must be a key
consideration in database design. For large-scale systems,
while advanced strategies like replication and partitioning are
essential, a fundamental understanding of indexing mechanics
remains the cornerstone of building efficient and scalable data
architectures.

VIDEO LINK AT YOUTUBE

https://youtube.com/shorts/TIy2hmAbqOg

ACKNOWLEDGMENT

The author would like to express sincere gratitude to God
Almighty for the guidance and ease in writing this paper.
Special thanks are also extended to Dr. Nur Ulfa Maulidevi,
S.T, M.Sc. and Dr. Ir. Rinaldi Munir, M.T. for their role as the
lecturer in the IF2211 Strategy and Algorithm course and for
publishing the lecture materials on the website, which were
instrumental in the research process. The author is deeply
appreciative of the unwavering support from family and friends
throughout the completion of this paper

REFERENCES

[1] Munir, Rinaldi. 2025. “Algoritma Decrease and Conquer
 (Bagian 1)”.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/11-
Algoritma-Decrease-and-Conquer-2025-Bagian1.pdf (Diakses pada 22
Juni 2025)

[2] The PostgreSQL Global Development Group. 2025. “28. Write-Ahead
Logging (WAL)”. https://www.postgresql.org/docs/8.1/wal.html
(Diakses pada 22 Juni 2025)

[3] The PostgreSQL Global Development Group. 2025. “12.9. Preferred
Index Types for Text Search”.
https://www.postgresql.org/docs/current/textsearch-indexes.html
(Diakses pada 22 Juni 2025)

[4] Munir, Rinaldi. 2025. “Pencocokan String”.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-
Pencocokan-string-(2025).pdf (Diakses pada 23 Juni 2025)

https://youtube.com/shorts/TIy2hmAbqOg
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/11-Algoritma-Decrease-and-Conquer-2025-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/11-Algoritma-Decrease-and-Conquer-2025-Bagian1.pdf
https://www.postgresql.org/docs/8.1/wal.html
https://www.postgresql.org/docs/current/textsearch-indexes.html
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-Pencocokan-string-(2025).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-Pencocokan-string-(2025).pdf

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

STATEMENT

Hereby, I declare that this paper I have written is my own

work, not a reproduction or translation of someone else’s

paper, and not plagiarized.

Bandung, 24 Juni 2025

Yonatan Edward Njoto 13523036

